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CEAR: Comprehensive Event Camera Dataset for
Rapid Perception of Agile Quadruped Robots

Shifan Zhu, Zixun Xiong, and Donghyun Kim
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Fig. 1: An overview of the dataset under various gaits. The top row illustrates three different gaits and a backflip motion.
The subsequent rows show different sensor data corresponding to each gait. Ratios of images are adjusted to fit into the figure.

Abstract—When legged robots perform agile movements, tra-
ditional RGB cameras often produce blurred images, posing a
challenge for rapid perception. Event cameras have emerged as
a promising solution for capturing rapid perception and coping
with challenging lighting conditions thanks to their low latency,
high temporal resolution, and high dynamic range. However,
integrating event cameras into agile-legged robots is still largely
unexplored. To bridge this gap, we introduce CEAR, a dataset
comprising data from an event camera, an RGB-D camera, an
IMU, a LiDAR, and joint encoders, all mounted on a dynamic
quadruped, Mini Cheetah robot. This comprehensive dataset
features more than 100 sequences from real-world environments,
encompassing various indoor and outdoor environments, differ-
ent lighting conditions, a range of robot gaits (e.g., trotting,
bounding, pronking), as well as acrobatic movements like back-
flip. To our knowledge, this is the first event camera dataset
capturing the dynamic and diverse quadruped robot motions
under various setups, developed to advance research in rapid
perception for quadruped robots. The CEAR dataset is available
at https://daroslab.github.io/cear/.
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I. INTRODUCTION

IN this paper, we introduce a comprehensive dataset devel-
oped for rapid perception of agile quadruped robots that can

perform dynamic movements in various lighting conditions
and environments. The superior mobility of quadruped robots
holds significant potential in applications requiring rapid nav-
igation in complex environments. However, despite significant
advancement in their locomotion capability [1], [2], their
application remains limited to the scenarios without immediate
needs or rapid exploration [3], [4]. This constraint delays
the broader adoption of the extremely capable legged robotic
system to perform hazardous and time-sensitive tasks, such
as disaster response, search and rescue, and firefighting [5],
[6]. One of the most pressing issues is the compromised
perception capability during swift movements: motion blur
in RGB images and distortion in LiDAR point clouds hinder
precise pose estimation and environmental understanding.

Event cameras, inspired by biological vision mechanisms,
detect logarithmic intensity changes in images and offer low
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TABLE I: Comparison of datasets with event cameras.

Dataset Event
Resolution Depth Sensor IMU Platform Environment Ground-truth Pose

D-eDVS [7] 128px × 128px RGB-D ✗ Handheld Indoor MoCap
evbench [8] 240px × 180px RGB-D ✗ Wheeled robot Indoor Odometer

Mueggler et al. [9] 240px × 180px ✗ ✓ Handheld Indoor/Outdoor MoCap
MVSEC [10] 2 × 346px × 260px LiDAR-16 ✓ Multiple Robots Indoor/Outdoor MoCap/Cartographer

UZH-FPV [11] 346px × 260px ✗ ✓ Drone Indoor/Outdoor MoCap
ViViD [12] 240px × 180px RGB-D/LiDAR-16 ✓ Handheld Indoor/Outdoor MoCap/LeGO-LOAM

ViViD++ [13] 240px × 180px
640px×480px RGB-D/LiDAR-64 ✓ Handheld/Car Indoor/Outdoor MoCap/RTK-GPS

LeGO-LOAM
DSEC [14] 2 × 640px × 480px LiDAR-16 ✗ Car Outdoor RTK-GPS

AGRI-EBV [15] 240px × 180px RGB-D/LiDAR-16 ✓ Wheeled Robot Outdoor LeGO-LOAM
TUM-VIE [16] 2 × 1280px × 720px ✗ ✓ Handheld/Bike Indoor/Outdoor MoCap

VECtor [17] 2 × 640px × 480px RGB-D/LiDAR-128 ✓ Handheld/Scooter Indoor MoCap/ICP
M3ED [18] 2 × 1280px × 720px LiDAR-64 ✓ Multiple Robots Indoor/Outdoor Faster-LIO

CEAR (ours) 346px × 260px
320px × 240px RGB-D/LiDAR-16 ✓ Agile legged Robot Indoor, Outdoor MoCap/Faster-LIO

* Extension -N represents a N-beam LiDAR and -D means depth camera.

latency and high temporal resolution [19], making them ex-
ceptionally suited for handling rapid robotic movements [20].
Additionally, their high dynamic range (HDR) effectively
addresses challenges in poorly-lit and brightly-lit settings,
thereby broadening potential applications for robots [21], [22].
Recent studies on event cameras have increasingly gained
attention in systems requiring rapid perception, such as drones
and autonomous vehicles [23], [24], yet their use has not
been widely recognized within the legged robot community.
Once properly configured, these unique sensors can signifi-
cantly enhance state estimation and terrain perception, greatly
expanding the capabilities of legged robots.

While promising, event cameras also have several limita-
tions when used as standalone sensing systems. Due to their
operating mechanism of detecting changes in brightness, event
data inherently depend on the motion of the camera itself (ego-
motion), making it challenging to differentiate between the
camera’s movement and changes in the external environment.
This issue can obscure the clarity of visual data representa-
tions, especially when the robot moves slowly or in direc-
tions parallel to environmental textures. Overcoming these
limitations and enhancing the functionality of agile-legged
robots in diverse environments necessitates the development
of algorithms for the synergistic integration of multimodal
sensors. However, as of 2024, comprehensive datasets are
lacking to support this research.

To bridge this gap, we introduce a new dataset collected
by a unique sensor suite on an agile quadruped robot, Mini-
Cheetah robot [25]. Our system features an event camera, an
RGB-D camera, an IMU, a LiDAR, and joint angle sensors.
The integration of event and RGB cameras provides the
legged robot with enhanced capabilities for both slow and
rapid perception. Depth information, crucial for accurate state
estimation and navigation, is supplied by the RGB-D camera
and LiDAR. The IMU, which can capture high-frequency
angular and acceleration data, is inherently immune to dis-
turbances from external dynamic objects. Furthermore, joint
angle data can also provide odometry information through
forward kinematics.

Our comprehensive dataset includes various distinct robot
gaits, including trotting, bounding, and pronking. It also en-

compasses a wide range of daily indoor and outdoor envi-
ronments, under varying lighting conditions (e.g., daytime,
nighttime, well-lit, dark, under blinking light, and hybrid light
setup having bright light sources in dark environments.). This
data collection mechanism provides comprehensive scenarios
to evaluate the resilience and adaptability of perception sys-
tems across various environments.

In summary, the main contributions of this paper are:
1) the inclusion of dynamic motions of a quadruped robot
(e.g., trotting, bounding, pronking, and backflipping) to fa-
cilitate rapid perception research, 2) comprehensive coverage
of the dataset including over 100 sequences gathered in 31
distinct environments under varying lighting conditions and
diverse robotic locomotion gaits, and 3) the provision of 6
DoF ground-truth poses from a motion capture system or
an advanced SLAM algorithm, along with precise intrinsic,
extrinsic, and temporal offset parameters.

II. RELATED WORK

In this section, we provide an overview of existing event
camera datasets, which are also summarized in Table I. The
first event camera dataset, introduced in 2014, featured a 128×
128 eDVS event camera [26] and an RGB-D camera [7]. In
2016, [8] published a dataset using an event camera (240 ×
180 pixels) for visual navigation of a mobile wheeled robot.
In the following year, [9] released a comprehensive handheld
dataset that includes motion speed information as a reference
for investigating the capabilities of an event camera (240 ×
180 pixels). These datasets have played a crucial role in the
introduction of event cameras in research communities.

Subsequent developments have led to datasets with higher-
resolution event cameras. In 2022, the ViViD dataset [12] was
expanded into ViViD++ [13], incorporating a high-resolution
event camera (640 × 480 pixels) for driving scenarios. This
update included repeated data collection along the predefined
trajectories at different times, categorizing motions as slow,
unstable, or aggressive. TUM-VIE dataset [16] includes stereo
event camera recordings (1280 × 720 pixels), capturing di-
verse environments and activities such as walking, running,
skating, and biking. Similarly, VECtor dataset [17] features
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Fig. 2: Configuration of the sensors. All sensors are rigidly
mounted on top of the Mini Cheetah robot. The coordinate
systems for the sensors, the robot’s body B, and the global
frame G are indicated by the red, green, and blue axes,
representing the x, y, and z directions, respectively.

head-mounted and pole-mounted stereo event camera se-
quences (640×480 pixels) in indoor settings. These enhanced-
resolution event camera datasets improved image clarity and
details, enabling more precise analysis.

In the evolution of event camera datasets, datasets for
specific research purposes have also been developed. The
DDD17 [27] and DDD20 [28] datasets, for instance, pro-
vide comprehensive metadata including vehicle speed, GPS
positioning, and detailed driving dynamics such as steering,
throttle, and brake inputs, improving steering prediction ac-
curacy. [29] aimed to tackle the place recognition challenge
by mounting a DAVIS346 event camera (346 × 260 pixels)
on a car, capturing data along the same trajectory at different
times. [15] created agricultural robotics datasets in varied agri-
cultural settings using a mobile wheeled robot. Additionally,
[14] utilized a dual stereo camera setup with a 16-channel
Velodyne LiDAR and an RTK-GPS system for automotive
driving scenarios. These datasets delve deeper into specific
fields and provide the opportunity to explore the potential of
event cameras in focused applications.

Another trend of event camera datasets is their applica-
tion in various robotic platforms. [11] introduced a dataset
focused on aggressive drone racing motions. [10] launched
the first multi-robot dataset in 2018, featuring indoor and out-
door places with handheld devices, hexacopters, vehicles, and
motorcycles. Additionally, [18] unveiled the M3ED dataset,
showcasing event cameras across diverse sensor arrays on
multiple robotic platforms, including unmanned aerial vehi-
cles, wheeled ground vehicles, and legged robots. Although
the M3ED dataset explores event cameras with a quadruped
robot, Spot, it did not include the dynamic movements of
the robot, such as pronking or bounding gaits. The M3ED
dataset features relatively conservative trotting gait only and
limited environmental variations. On the other hand, our
dataset encompasses various, dynamic quadruped robot gait
and motions, multi-modal sensor data including dense depth
data, and diverse scenarios gathered in distinct environments
under different lighting conditions.

TABLE II: Hardware specifications

Sensor Type Frequency Specification

DAVIS346 N/A Resolution: 346 px × 260 px
FoV: 70◦ × 56◦

DVXplorer Lite N/A 320 px × 240 px
FoV: 61◦ × 52◦

RealSense D455 60
Resolution: 640 px × 480 px

RGB FoV: 80◦ × 65◦

Depth FoV: 80◦ × 64◦

Velodyne VLP-16 10 Range: 100 meters
16 channels

VectorNav VN-100 400

3-axis accelerometer
3-axis gyroscope

3-axis magnetometer
3 DoF orientation

Mini Cheetah Motors 100 12 encoders
OptiTrack 120 8 PrimeX-22 cameras

III. HARDWARE SETUP

Fig. 2 illustrates our hardware setup, including an event
camera, a RealSense D455 RGB-D camera, a 9-axis Vec-
torNav IMU, a 16-channel Velodyne LiDAR, and 12 joint
encoders on the Mini Cheetah robot. We use two different
event cameras: a DAVIS346 event camera for outdoor and a
DVXplorer Lite event camera for indoor/backflip data collec-
tion due to its superior throughput of 100 million events per
second (MEPS), compared to the DAVIS346’s 12 MEPS. All
vision sensors and an IMU are rigidly mounted on the Mini
Cheetah robot using custom 3D-printed fixtures. The Mini
Cheetah’s 12 actuators control its limbs, with joint numbering
starting from the front right abduction/adduction joint and
continuing through the hip and knee flexion/extension joints,
and then extending to the front left, hind right, and hind
left limbs as depicted in Fig. 2. Sensor specifications are
summarized in Table II.

A. Sensors Overview

The DAVIS346 event camera (346×260 pixels), with a 70◦

horizontal and 56◦ vertical field of view and a 120 dB dynamic
range, includes a built-in 6-axis IMU and the capability to
capture RGB images. The DVXplorer Lite (320×240 pixels),
featuring a 61◦ horizontal and 52◦ vertical field of view and
a 110 dB dynamic range, also includes a built-in 6-axis IMU
but cannot output RGB images. Both event cameras feature
sub-millisecond latency and operate effectively in lighting
conditions up to 100k lux, with 50% of their pixels responding
to 80% contrast. The DVXplorer Lite features a dynamic
range of approximately 110 dB and functions from 0.3 lux,
while the DAVIS346 offers a slightly higher range of 120 dB
starting from 0.1 lux. We put an infrared filter in front of both
event cameras to block emissions from the RealSense RGB-D
camera.

The RealSense camera D455 operates at 640 × 480 res-
olution and 60 Hz, with 80◦ × 65◦ and 80◦ × 64◦ fields of
view for its RGB and depth cameras, respectively. Timestamps
are set at the midpoint of exposure, and auto exposure is
enabled to obtain well-exposed images in different lighting
conditions. Thus, the timestamp gap between RGB and depth
frames varies, typically from 0 to 8.33 ms. VectorNav VN-
100 is a 9-axis IMU that comprises a 3-axis gyroscope, 3-axis
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accelerometer, and 3-axis magnetometer at 400 Hz. Addition-
ally, the dataset also includes the orientation data produced by
the IMU sensor in quaternion representation. The Velodyne
VLP-16 LiDAR delivers highly accurate depth measurements
as point clouds at 10 Hz. The LiDAR is mounted atop the
Mini Cheetah, ensuring an unobstructed 360◦ horizontal and
±15◦ vertical FoV of the surrounding environment, with a
range of up to 100 meters. The Mini Cheetah’s 12 custom
motors feature joint encoders that measure angular position at
1 kHz. For this dataset, data is recorded at 100 Hz.

To gather ground-truth pose data, we use the OptiTrack
motion capture (MoCap) system, equipped with 8 PrimeX-22
cameras in a 7.5 m × 5.5 m × 2.8 m space. This setup is
ideal for precise motion tracking and generating accurate 6
DoF ground-truth poses.

B. Calibration

The calibration process encompasses intrinsic calibration of
cameras and an IMU, as well as extrinsic calibration across all
sensors. All parameters are available on the dataset website.

1) Intrinsic Calibration: We performed intrinsic parameter
calibration of event cameras to empirically measure focal
length, optical center, and distortion coefficients. The Kalibr
toolbox [30] is used with the grayscale images constructed
from the event stream. We followed standard steps by ob-
serving a checkerboard of known dimensions from varying
angles. For IMU intrinsic calibration, we used Allan Variance
ROS toolbox1, involving 6 hours of static data collection
for analysis, to identify random walk and noise density of
a VectorNav IMU. For the RealSense camera, we did not
perform additional intrinsic parameter calibration and used
onboard parameters provided by the manufacturer. For confir-
mation, we qualitatively validated the parameters by checking
the alignment between RGB images and the depth images
projected into the RGB frame.

2) Extrinsic Calibration: Extrinsic calibration process de-
termines the spatial transformation between each pair of
sensors. Due to its high image quality, we used the RealSense
RGB camera as a reference to identify extrinsic parameters
with other frames – an event camera, a VectorNav IMU,
a LiDAR, and a robot. The Kalibr toolbox was utilized to
acquire extrinsic parameters between the RealSense camera,
event camera, and the VectorNav IMU, while the Auto-
ware toolkit2 facilitated the extrinsic calibration between the
RealSense RGB camera and LiDAR. Extrinsic parameters
between the RealSense RGB camera and the robot were
determined from the CAD file. For the RealSense RGB and
depth cameras, we used onboard extrinsic parameters provided
by the manufacturer. We then derived the extrinsic parameters
for all sensor pairs using the identified parameters, creating
completed spatial relationships within our sensor array.

C. Time Synchronization

Although every sensor includes accurate internal clock
signals, the timestamp of each clock has different offsets.

1https://github.com/ori-drs/allan variance ros
2https://github.com/autowarefoundation/autoware

Distance to front ground

Fig. 3: Time synchronization across different sensors.
The red vertical line indicates alignment of the RealSense
camera and VectorNav IMU, and the event camera’s angular
velocity, while the orange line shows the alignment of LiDAR,
MoCap, and Mini Cheetah’s joint angle. For visualization, we
magnified the average offset by 10 to distinguish the difference
between the original and synchronized data.

Setting a single timestamp across different sensors is crucial,
and hardware synchronization – a single clock source shared
by multiple sensors – is often used. However, considering the
outdoor data gathering, acrobatic backflip, and various sensors
(e.g., motion capture and the robot’s joint encoders), the
hardware connection of all sensors was not a practical option
for us. Instead, we introduced a specific motion designed for
accurate temporal synchronization through post-processing.

Every time we start the data collection, the Mini-cheetah
performs a body pitching swing to produce specific sinusoidal
patterns in the sensor data. Since each camera sensor includes
a built-in IMU, we compare the angular velocity data from
the event and RealSense cameras with the VectorNav IMU,
using only the data aligned with the global y-axis. During
this process, an event camera is used as a reference and the
timestamps of other sensors are offset based on it. Then, the
robot’s joint encoder data are synchronized with the event
camera by comparing the angular velocity of the knee joint
and the built-in IMU of event camera.

For the LiDAR and MoCap data synchronization, we used
joint position data as a reference. Synchronizing the LiDAR
sensor is particularly challenging due to the lack of a velocity
measurement sensor such as an IMU. To make a sinusoidal
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(a) Trot

(b) Bounding

(c) Pronking

(d) Backflip

Fig. 4: Histograms of forward/vertical accelerations, and
pitch angular velocity during different gaits. The histogram
depicts the unique features of each gait. Compared to the
stable trot gait, the pronking gait exhibits high-dynamic ver-
tical movement, as indicated by high z̈ values. Similarly, the
backflip motion shows distinctive high body pitch velocity (θ̇y)
and a wide range of acceleration (ẍ, z̈).

pattern in LiDAR data, we perform the pitch swing sequence
on flat ground and use the distance from the LiDAR sensor
to the front ground as a pattern for matching. By comparing
this distance, the robot’s knee joint angles, and the body
pitch computed from MoCap data, we performed temporal
synchronization across all sensors.

In the computation of temporal offset between sensors,
we initially normalized all data to standardize measurement
scales. We then uniformly sampled 10000 data points from all
sensor data by applying linear interpolation to account for the
different sampling rates of each sensor. Using these sampled
data, we calculated temporal offsets by maximizing cross-
correlation. Note that each data sequence includes a body pitch
swing motion as well as a ball thrown in front of the robot.
This ball data was used to verify the temporal synchronization
accuracy across all camera sensors. Fig. 3 illustrates the time
synchronization results.

IV. DATASET

The CEAR dataset contains 106 sequences including 50
indoor, 40 outdoor, and 16 backflip sequences. Our dataset
aims to evaluate algorithm performance: 1) across diverse
quadruped gaits and lighting conditions via indoor and outdoor
sequences, and 2) in agile motions through backflip sequences.
The name of each sequence reflects the recording environment,
lighting conditions, and the gaits of the quadruped robot.
For instance, downtown1 day trot represents data gathered
in a downtown environment during daytime with a trot gait,
while classroom blinking comb indicates data collected in a

classroom environment under blinking light conditions with a
combination of trotting, bounding, and pronking gaits. Fig. 4
further illustrates dynamic characteristics inherent to each gait.
In addition, we marked the initial positions of the robot’s four
feet in each sequence and confirmed its return to these exact
positions, providing an additional metric for pose estimation.

A. Outdoor Sequences
The outdoor sequences were captured in 10 distinctive

outdoor environments, with four sequences per environment.
Each set of four sequences includes variations of two different
sets of quadruped gaits (trot-only and combined gaits) under
different periods of the day (daytime and nighttime), ensur-
ing a comprehensive representation of real-world settings.
Daytime sequences feature illumination levels ranging from
40 lux to 80000 lux, while nighttime sequences range from
0.5 lux to 10 lux. Fig. 5 provides an illustration of all
outdoor environments and associated challenges such as varied
light conditions from overexposure to underexposure, sunny,
cloudy, and foggy weather, diverse visual patterns including
featureless terrains and distant skies, dynamic objects (e.g.,
vehicles and pedestrians), and slippery surfaces. We include
the estimation result of Faster-LIO algorithm [31] as ground
truth because of its good matches between the initial and final
poses, as shown in Fig. 6, and superior accuracy on indoor
MoCap sequences as evidenced in Table III.

B. Indoor Sequences
The indoor sequences were collected in 13 diverse en-

vironments. In the dining hall, building floor, and home
environments, we recorded two sequences per site, with each
sequence showcasing a different set of quadruped gaits. For
other indoor environments where we can control the light-
ing condition, data collection was expanded to encompass a
range of lighting conditions: well-lit (100 lux to 500 lux),
dark (0.5 lux to 5 lux), blinking (0.5 lux to 500 lux), and
dark environment with bright light sources, which we call
high dynamic range (HDR) condition (0.5 lux to 800 lux).
Specifically, in laboratory environments, four sequences were
recorded in one site under both consistently well-lit and HDR
lighting conditions. In classroom and kitchen environments,
we gathered six sequences in each place across well-lit,
HDR, and blinking lighting conditions. In the MoCap space,
we arranged various objects on the ground to create three
different scenes, recording six sequences in each environment
under well-lit, dark, and blinking lighting conditions. Ground-
truth poses for the mocap {· · ·} sequences are obtained from
the MoCap system, while those for other indoor sequences
are derived from Faster-LIO. We envision that these indoor
sequences will enable a comprehensive evaluation of agile
quadruped robots across varied indoor environments and under
diverse lighting conditions.

In addition to the challenges similar to outdoor ones such
as diverse lighting conditions, dynamic objects, and slippery
floors, indoor environments introduce unique complications
such as the reflections from floors or glasses that can confuse
perception, and closely positioned obstacles that may briefly
obstruct cameras’ view.
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Fig. 5: Overview of 10 outdoor environments. (a) is the area around a campus building with a direct sunlight source. (b)
and (c) are downtown areas containing dynamic elements like pedestrians, vehicles, and blinking neon lights. (d) is a forest
environment that includes slippery ground. (e) is a grassy environment with featureless ground, expansive space, and distant
sky. (f) includes two environments, one is a short sidewalk path and the other one is a route between two buildings, highlighting
a standard pedestrian space environment. (g) is a parking lot during a cloudy day and a foggy night. (h) is a residential area
with complete darkness at night. (i) presents a long sidewalk path, illustrating several pavement types. Event and RGB images
are presented with satellite views at each site, showing day and night scenes at the same location, indicated by green circles.
The yellow star marks the start/end points, and the red path denotes the trajectory.

C. Backflip Sequences

The backflip, involving the rotations up to 750◦/s, was
captured in 7 indoor and 1 outdoor environments, with two
sequences in each environment. We excluded the LiDAR
sensor due to its substantial weight, which can bother the
success of the acrobatic movement, and the significant motion
distortion in the point cloud data. Each sequence contains
three consecutive backflips and the robot returns to the initial
starting position after the three flips.

Backflip sequences present distinct challenges that are dif-
ferent from other sequences. The backflip motion’s high speed
leads to significantly blurred images from the RealSense RGB
camera. Ground contact at landing causes abrupt changes in
acceleration and angular velocity (Fig. 1 and Fig. 4), posing
significant challenges for visual-inertial systems and serving
as a crucial test for their robustness in agile robot motions.
In addition, feature detection becomes also difficult during
the acrobatic motion. Although we chose environments that
offer visual features from multiple angles, captured images
may appear featureless when the camera’s view is directed
toward the bare ceiling or floor.

V. EVALUATION

To assess the difficulty and quality of the dataset, we tested
various sequences with state-of-the-art algorithms for several
sensor pairs, including Faster-LIO (LiDAR + IMU) [31],

E-ATS (Event + RGB-D) [32], UltimateSLAM (Event +
RGB + IMU, noted as USLAM) [21], VINS-Fusion (RGB
+ IMU) [33], ORB-SLAM3 (RGB-D with loop closure) [34].
All algorithms are tested using open-source implementation
provided by the authors, but with CEAR’s intrinsic/extrinsic
parameters. We diligently tuned the parameters of each algo-
rithm to maximize the performance and found the different
sets for indoor and outdoor environments. In the case of
USLAM algorithm, we utilize three different setups. When
using DVXplorer Lite, which lacks RGB images, we construct
grayscale images from event data by utilizing E2VID [22]
(event + constructed frame + IMU mode). When RGB image
is available (DAVIS346), we use default setting (event + frame
+ IMU mode). When the environment is dark, we use only
event and IMU since the quality of constructed images was
low (event + IMU mode). In the evaluation, we use the best
results among the ones from three modes.

For sequences captured within the MoCap environment
(labeled as mocap {· · ·}), we use ground-truth poses from the
MoCap system for evaluation. For sequences without a MoCap
system, we use the pose estimated by the Faster-LIO algorithm
as ground truth. We evaluate each algorithm based on two key
metrics: Absolute Trajectory Error (ATE) and Relative Pose
Error (RPE). For RPE computation, rotation is measured in
degrees per second and translation is measured in centimeters
per second, except for backflip sequences where we measure in
degrees and centimeters per 0.1 seconds because the duration
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Fig. 6: Results of various SLAM algorithms on our dataset. (a), (b), (c), and (d) are within an indoor MoCap environment,
featuring a trot gait in a well-lit environment, mixed gaits in a well-lit environment, a trot gait in a dark environment, and
a trot gait under blinking lighting condition, respectively. (e) is a lab environment with mixed gaits under an HDR lighting
condition. (f) occurs in a public space with a trot gait under a well-lit lighting condition. (g) and (h) are outdoor scenarios,
with (g) occurring on a sidewalk with a trot gait during the daytime, and (h) presenting a downtown street with mixed gaits
during nighttime. The yellow star marks the starting/ending positions and the red triangle indicates the point of divergence.

TABLE III: Comparison on CEAR Dataset. [Rrpe :
◦/s,Rate :

◦, trpe : cm/s, tate : cm]

Faster-LIO VINS-Fusion ORB-SLAM3 USLAM E-ATS
Rrpe /trpe Rate /tate Rrpe /trpe Rate /tate Rrpe /trpe Rate /tate Rrpe /trpe Rate /tate Rrpe /trpe Rate /tate

Seq.1 Fig.6a 1.2/3.3 2.4/5.4 0.7/4.4 1.4/19.9 0.8/1.0 0.6/2.5 1.9/18.3 16.4/104.6 0.7/1.4 4.3/25.4
Seq.2 Fig.6b 1.5/3.2 2.2/8.4 0.7/3.4 4.4/43.4 0.6/2.2 1.3/17.3 1.8 1 / 8.3 1 14.3 1 /109.1 1 0.8/1.4 3.5/24.5
Seq.3 Fig.6c 1.2/3.6 1.3/7.4 0.7/3.8 1.7/29.5 1.4/8.1 4.4/31.7 3.1∗/24.0∗ 17.5∗/216.0∗ 2.3/3.8 12.3/65.1
Seq.4 1.4/3.8 2.1/8.6 1.0/4.8 4.6/51.5 1.3/5.4 4.3/28.6 2.2∗/16.1∗ 24.9∗/212.0∗ 1.4/3.6 9.7/76.1
Seq.5 Fig.6d 1.6/4.1 2.8/6.0 1.0/9.0 2.4/66.2 ∗ ∗ 2.1/22.5 18.3/131.5 7.9/20.4 32.5/176.3
Seq.6 1.2/3.5 1.4/8.6 1.0/4.3 3.3/42.4 ∗ ∗ 2.6∗/11.3∗ 13.0∗/124.6∗ 7.6/22.4 47.2/191.7
Seq.7 Fig.7 × × 1.0∗/1.0∗ 2.2∗/5.6∗ ∗ ∗ 2.8∗/2.3∗ 7.1∗/2.9∗ 0.9∗/0.8∗ 0.8∗/1.0∗
Seq.8 Fig.6e GT GT 1.4/9.3 4.7/212.2 1.1/5.4 2.4/105.0 1.7∗/34.2∗ 30.5∗/272.3∗ 2.5/6.1 17.4/166.6
Seq.9 Fig.6f GT GT 1.4/9.3 4.7/118.3 1.1/5.4 2.4/351.1 1.7∗/34.2∗ 30.5∗/612.7∗ 2.5/6.1 17.4/90.7
Seq.10 Fig.6g GT GT 1.1/19.0 2.5/160.3 1.1/9.6 1.8/18.3 1.2 2 /31.8 2 9.0 2 /412.8 2 1.0/17.1 2.4/343.5
Seq.11 Fig.6h GT GT 0.8∗/47.8∗ 4.5∗/657∗ 0.8∗/15.8∗ 7.2∗/475∗ 1.7∗ 2 /51∗ 2 31∗ 2 /1184∗ 2 0.9/9.5 6.1/476.2
Seq.12 GT GT ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

From top to bottom, the sequences are as follows: Seq. 1-6 (mocap environment) depicts various gaits under different lighting conditions: trot gait/well-lit,
combined gaits/well-lit, trot gait/dark, combined gaits/dark, trot gait/blinking light, and combined gaits/blinking light. Seq. 7 shows a backflip and Seq.
8 is a trot gait in a laboratory with HDR lighting. Seq. 9 is a trot gait in a well-lit learning center. Seq. 10 shows a trot gait on a sidewalk during the
daytime. Seq. 11 features combined gaits at night in a downtown setting while Seq. 12 shows combined gaits at night in a residential area. The symbol *
indicates a significant divergence, which means that the trajectory diverges by 10% of the total trajectory length. In this case, we truncated the trajectory
and evaluate only the portion of the data before the divergence. The symbol × means not included. The term GT is used to denote ground truth. RPE for
backflip sequences (Seq.7) is assessed at 0.1-second intervals. USLAM operates in three modes: event + constructed frames + IMU ( 1 ), event + frame +
IMU ( 2 ), or event + IMU (without 1 and 2 ).

of one backflip motion is short. ATE is measured in centime-
ters and degrees to evaluate pose estimation accuracy. We use
the initial 50% of the poses to align trajectories from different
coordinate systems and the evaluation is based on the open-
source software EVO3. The evaluation results are summarized
in Table III to provide a quantitative comparison.

The results show that most algorithms achieve accurate
pose estimation with trot gait in well-lit conditions. However,
non-event-based algorithms’ accuracy drops with dynamic
gaits like bounding and pronking, while event-based meth-
ods remain stable (Table III Seq.1 and Seq.2). Challenging
lighting conditions (dark and blinking) further affect accuracy
(Table III Seq.3-6). E-ATS performs poorly in Seq.3-6 due
to darkness failing to trigger event data and blinking light

3https://github.com/MichaelGrupp/evo

breaking the intensity-constant assumption. Notably, backflip
sequences, containing three consecutive backflips, present sig-
nificant challenges, so none of the tested algorithms can handle
more than one backflip. Consequently, we limit our evaluation
to a single backflip(Fig. 7). Among the four tested algorithms,
only one (E-ATS) survived from divergence. Our evaluation
results imply that the dataset includes sufficiently challenging
scenarios for state-of-the-art algorithms and serve as valuable
assets for future benchmarks of advanced event-based visual-
inertial odometry algorithms.

VI. CONCLUSIONS
In this paper, we introduce the CEAR, the pioneering

dataset designed to investigate the perception system of a
dynamic quadruped robot by utilizing event/RGB-D cameras,
LiDAR, IMU, and joint encoders. The CEAR dataset offers
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Fig. 7: Pose estimation during backflip. This is a subset of
env5 backflip1 that contains three backflips. The yellow star
marks start/end positions and red triangle indicates the diverge.

a comprehensive collection of indoor and outdoor sequences
under various quadruped gaits and lighting conditions. Addi-
tionally, it includes backflip sequences to reflect the unique
challenges in motion estimation of dynamic legged robots.
We envision the CEAR dataset as a cornerstone for exploring
the rapid perception of event cameras in robotics research.
Furthermore, we anticipate that the dataset will enable the
exploitation of unique dynamics introduced by quadruped
robots and facilitate the development of specialized algorithms
for legged systems. In future work, we plan to add a hardware
synchronization module and collect data under more versatile,
dynamic movements and develop data-driven methods using
CEAR dataset.

ACKNOWLEDGMENT
We express our gratitude to Naver Labs and MIT

Biomimetic Robotics Lab for providing the Mini-cheetah robot
as a research platform.

REFERENCES

[1] D. Kim et al., “Highly dynamic quadruped locomotion via whole-
body impulse control and model predictive control,” arXiv preprint
arXiv:1909.06586, 2019.

[2] G. B. Margolis et al., “Rapid locomotion via reinforcement learning,”
arXiv preprint arXiv:2205.02824, 2022.
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